Climate change analysis for South Korea

Data analysis from

CRU, ECMWF, NCEP, TRMM, ECHAM5 and ECHAM6 (CMIP5)

Youmin Chen

Henan University, Kaifeng, China

Visiting scientist at APEC Climate Center (South Korea)

Outlines

- -Data and methodology
- -Trend pattern analysis
- -Area weighted average
- -Summary

Metadata from various datasets

Data Sources (temp & prcp)		Temporal info		Spatial info		Grids
		range	resolution	range	resolution	
CRU		1901-2009	Monthly	Global land	0.5	0.25
ECMWF		1990-2009	6-hourly	Globally	1.125	0.25
NCEP		1979-2009	6-hourly	Globally	2	0.25
TRMM		2000-2009	3-hourly	Tropical	0.25	0.25
ECHAM5 (AR4)	20C3M	1860-2100	Daily	Globally	2	0.25
	A1B	2001-2100	Daily	Globally	2	0.25
	A2	2001-2100	Daily	Globally	2	0.25
	B1	2001-2100	Daily	Globally	2	0.25
ECHAM6 (CMIP5)	piControl	1850-2100	Daily	Globally	2	0.25
	RCP26	2006-2100	Daily	Globally	2	0.25
	RCP45	2005-2100	Daily	Globally	2	0.25
	RCP85	2006-2100	Daily	Globally	2	0.25
	amip	1979-2008	Daily	Globally	2	0.25

Methodology

- **—Trend:** Mann-Kendall trend and t-test (95%:1.95)
- -Abrupt change analysis: Pettitt test for change points
- -Area weighted average

Area weighted average =
$$\frac{\sum_{i=1}^{n} x_i \cdot \cos(lat(x_i))}{\sum_{i=1}^{n} \cos(lat(x_i))}$$

Study area

0.25 by 0.25

Grids: 156

Trend pattern analysis

- •Temperature unit: degrees C/100yr
- •Precipitation unit: mm/100yr
- •t-test at 95% significance: 1.96

Temperature trend (CRU)

Trend patterns for Temperature

Trend patterns for Precipitation

The area weighted average

Data grids for South Korea

Inter-annual variation of temperature

Trend: 1.5 degC/100years (t-test=7.78 > 1.96)

Change points: 1947 up; 1988: up

Inter-annual variation of precipitation

Trend: 228 mm/100years (t-test=2.70 > 1.96)

Change points: 1952: up

Inter-annual variation of temperature and precipitation

Change points for temp: 1947; 1988

Change points for prcp: 1952

Correlation of precipitation and temperature

Intra-annual variation of temperature and precipitation

Data uncertainty (South Korea)

Temperature Scenarios (AR4)

Temperature Scenarios (AR4 vs. CMIP5)

Precipitation Scenarios (AR4 vs. CMIP5)

Trends (unit: mm/100yr; degC/100yr)

Data Sources (temp & prcp)		Temperature		Precipitation		Time
		Trend	T-test	trend	T-test	periods
CRU		1.42	6.56	193.34	2.10	1901-2000
ECMWF		2.33	1.30	-836.31	-0.97	1990-2009
NCEP		1.13	1.04	-811.17	-1.43	1990-2009
CRU		1.54	0.65	496.79	0.52	1990-2009
CRU		1.53	7.78	227.61	2.70	1901-2009
ECHAM5 (AR4)	20C3M	0.32	2.23	-28.23	-0.49	1901-2000
	A1B	4.06	10.72	185.36	1.77	2001-2100
	A2	4.41	10.95	83.97	0.96	2001-2100
	B1	2.93	9.66	100.47	1.30	2001-2100
ECHAM6 (CMIP5)	RCP26	0.04	0.66	-74.21	-0.99	2006-2100
	RCP45	1.61	6.89	74.89	0.72	2006-2100
	RCP85	4.75	11.67	29.48	0.59	2006-2100

Scenarios of global temperature (from IPCC AR4)

Summary 1 (temperature)

- The temperature increased by 1.4 degC in the 20th century.
- The abrupt changes of the temperature were detected respectively in 1947 and 1988.
- The temperature would increase by from 0.04 to 4.75 degC
 at various scenarios in South Korea.
- The temperature shows much stronger increase in South Korea than the whole East Asia.

Summary 2 (precipitation and temperature)

- The precipitation increased by 193mm in the 20th century.
- The abrupt change of the precipitation was detected in the year 1952.
- The precipitation didn't show any significant change at various scenarios in the 21th century.
- Relationship of T and P show positive correlation in the beginning of the 20th century, then became negative correlation from 1930 to 1990, and afterwards, became positively correlated again.