

Panel 5.2

Barriers to Adaptation in socially vulnerable and marginalized groups

Human Vulnerability and barriers of adaptation to climate change in Indian Sunderbans Region: A critical assessment.

Sahana Bose National Maritime Foundation, India

Indian Sunderbans Regions

- Sunderbans Islands situated at the mouth of Bay of Bengal between India and Bangladesh, is a geographically challenged region of the world.
- Large scale weather anomalies has created <u>depletion of mangrove forest</u> and <u>loss of agricultural land</u> to the poor people.
- This depletion of mangroves has caused problems of high salinity, intense sunlight, frequent tidal inundation and storm surges.
- Vanishing of two big islands Bedford and Lohachara has displaced thousand of climate refugees and their inward migration is responsible for mangrove deforestation.

- □ Frequency of the cyclones has decreased but their severity has increased.
- □ Rainfall has considerably increased.
- More erratic within a span of ten years.
- ☐ The span of monsoon season has shifted.
- □ It is now delayed by 15 to 20 days.
- There is an increase in water level during high tide.
- Intrusion of saline water into the agricultural land results in loss of yield and creates risk to the farmers.
- Landless farmers are migrating in search of new lands.

Land Loss in 10 most vulnerable Island in eight years of the last decade

SI. No.	Islands	2001 (In sq km)	2009 (In sq km)	Loss (In sq km)	% Loss
1	Dakshin Surrendernagar	44.336	42.015	2.324	5.23
2	Sagar	244.434	239.091	5.343	2.18
3	Namkhana	150.155	145.488	4.667	3.1
4	Moushuni	28.283	28.283	0.64	2.28
5	Ghoramara	5.339	4.564	0.774	14.52
6	Dalhousle	36.084	34.28	1.904	5.26
7	DhanchI	67.101	62.201	4.9	7.3
8	Bulchery	26.915	23.287	3.628	13.45
9	Phangaduani	31.316	26.159	5.157	16.44
10	Jambudwip	6.242	4.979	1.263	20.19
Cumula	ative land loss for ten Islands			30.6	

Changes in the Land use patterns and land cover classes in Sunderbans between 2001 and 2009.

Source: Hazra, S, Samanta K, Mukhopadhyay A & Akhand A., Temporal Change Detection (2001-2008) Study of Sundarban (2010), School of Oceanographic Studies, Jadavpur University

SI.N o	Land use Land cover Classes	Year 2001 (in sq km)	Year 2009 (in sq km)
1.	Dense Forest	1655.878	1651.3275
2.	Saline Banks	38.93	74.7965
3.	Agricultural Land	2149.615	1691.246
4.	Water Body	232.888	<u>250.6531</u>
5.	Sand	8.0835	8.7664
6.	Reclaimed land from forest	14.512	12.644
7.	Swamp	14.847	20.41

Critical and Neglected Groups:

Two types of environmentally induced migrants

- i) Rural illegal Bangladeshi migrants.
- ii) The village dwellers living near the coast, continuously migrating from one island to another.

Demarcation of India-Bangladesh Border.

Barriers of Adaptation to Climate Change

- Illegal Bangladeshi migrants.
- This is creating burden to Indian Sunderbans Region where the population of the region is already above 4.1 million.
- The Population density of Indian Sunderban Region is above 1100 person/square kilometers.
- Problem of rehabilitation of environmental refugees where these refugees could be accommodated?
- Problem of <u>Land Scarcity</u>
- High level of illiteracy Lack of Knowledge of Climate Change.
- Lack of Community Participation Rate.
- People are migrating in search of jobs in the nearby cities- creating pressure in the urban areas.
- Problem in the <u>construction of embankment</u>.

Construction of Embankments

Projects carried out:

- How these environmental refugees could be added in the decision making process.
- What is the people's perception about climate change issues.
- Climate change adaptation so far done and what new things could be done.

Indigenous Adaptation Strategies:

- Mass Education- concept of climate change.
- Community Participation.
- Disadvantage of shrimp cultivation near the mangrove plantation.
- Agro-forestry method.
- Salt resistance crops.

- Alternative source of income- weaving, making mats, chairs and fans so that these money could be used in adaptation process.
- To hold back the rural population, is a major challenge for this area.
- Role of panchayat-Implementation of decentralised planning.

Saving the Sunderban Mangrove Ecosystem

- Having 2,118 sq km of total mangrove forest cover, the Indian Sunderbans have soaked in 4.15 crore tonnes of carbon dioxide, valued at around \$79 billion in the international market, researchers from the University of Calcutta said.
- The more such biomass is there on earth, the more CO₂ will be pulled from the atmosphere.
- This will ultimately result in controlling the rise of atmospheric temperature and the subsequent climate change.

Conclusions:

- Today the resource-base of Sundarbans is not able to sustain the lives and livelihood of people.
- An effective land and rehabilitation policy that will facilitate the process is needed.
- Research on new embankment technology and design.
- The most vulnerable group living in the embankments and along the banks – need to be shifted out urgently.
- Need wider research and network between civil society on impacts and vulnerabilities.
- Global funds are needed to pay for the incremental development cost — but the local and national governments and the civil society must ensure that funds are well directed and used efficiently to address the needs of the Sundarban.

Thank You

Questions.....