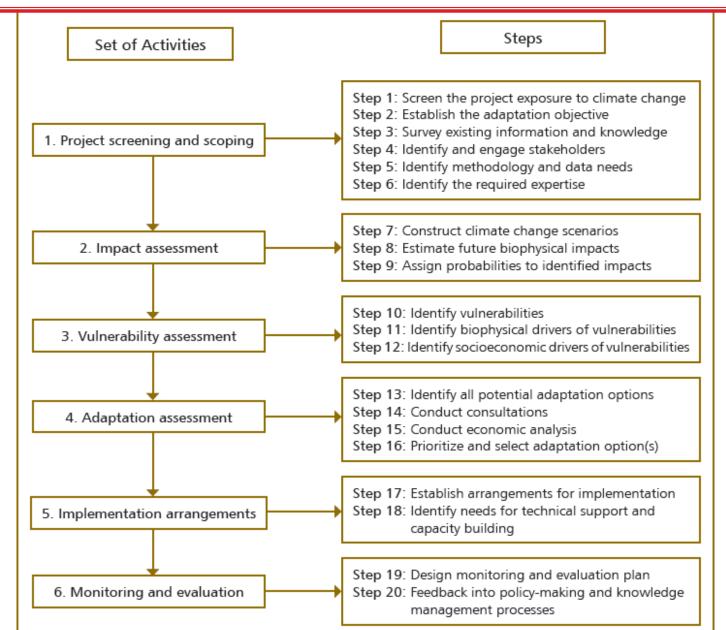
Co-benefit of Mitigation & Adaptation in ADB Project

RYUZO SUGIMOTO Asian Development Bank

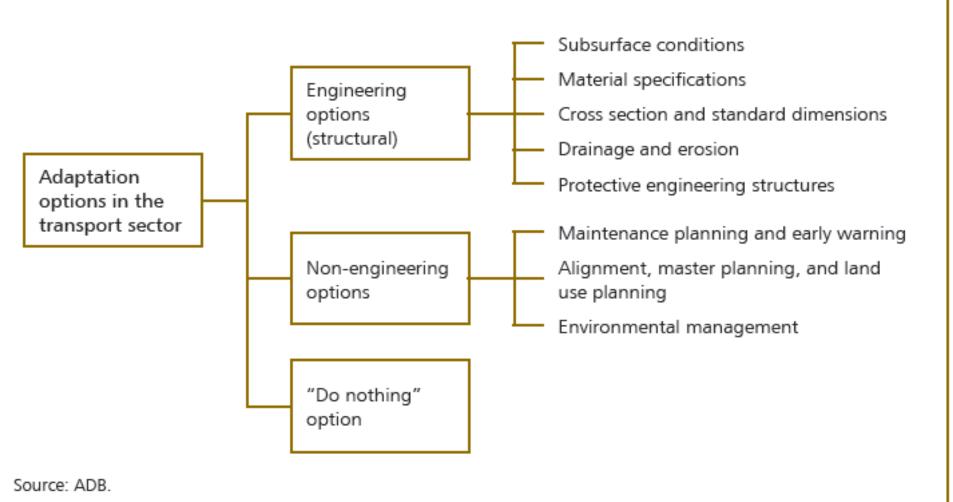
Agenda

- The adaptation project in ADB
- Category of co-benefit
- Cases in ADB Project



Adaptation Project in ADB

- ADB has Adaptation Projects in 2012
 - 17 investments projects and 38 TA
 - 895M\$ for adaptation component
 - 2.6 B \$ value of Projects
 - Sectors... Agriculture & Natural resource,
 Urban, Transport, Energy


Assess Adaptation Needs and Options in the project process

Guidelines for Climate Proofing Investment in the Transport sector

Figure 1 Nature of Adaptation Options in the Transport Sector

Why co-benefit is important

- Get the different benefit now and daily
 - Mitigation Benefit → reduce energy cost daily
 - Adaptation Benefit → reduce risk in the future
- Get the access of additional finance
 - chances to access the finance from Developed Countries, Private sectors
- On the other hand, get different beneficiaries
 - Mitigation -> For global benefit (NIMBY issue)
 - Adaptation -> For their own Communities & Regions.

The category of Co-benefit b/w mitigation and adaptation measures

- - The outcome of tech. effect on Mitigation & Adaptation
 - ✓ Greening in Urban, Efficient Waterworks
- 2. Adaptation Meas. + Mitigation Meas.
 - Upgrade for another purpose
 - Raise the height of train rail, battery with RE,

The measures of adaptation with mitigation

Sector		Adaptation	Mitigation
Water Resource & Agriculture	Preventing Water leakage from pipe	 Reduce the water intake 	 Increase efficiency of water supply
	Mangrove as break water	 Reduce flood risk 	Carbon capture
Transport	High elevated LRT with urban planning	Reduce flood riskSupport relocation of areaAvoid flood road	 Reduce the use of vehicle
Urban	Compact City (residential relocation)	 Keep the protect area compact 	 Reduce Trans. Needs
	Greening urban	 Mitigate the temp. increase 	 Reduce A/C demands
Energy	Renewable energy with battery	Disaster resilient by off-gridReduce flood risk	 Reduce thermal plants

Case of Transport Sector

Cascade of multi-purpose barrages Adaptation=Mitigation

[Adaptation]

 Keep water minimum depth in dry season now and in future

[Mitigation]

 Develop intermodal shift to inland waterway

Hunan Xiangjiang Inland Waterway Project in PRC

Case of Urban Sector

Road and WWTP rehabilitation

Adaptation+Mitigation

[Adaptation]

 Use of permeable surface for sidewalk to improve water retention in urban area

[Mitigation]

- Light Emitting Diode (LED) Street Lights

[Both]

- Study on Climate Proofing Design for urban infrastructure
- Capacity Building for Local stakeholders

Case of agriculture

Establishment of Climate-resilient Rural Livelihood Project

Adaptation=Mitigation Adaptation+Mitigation

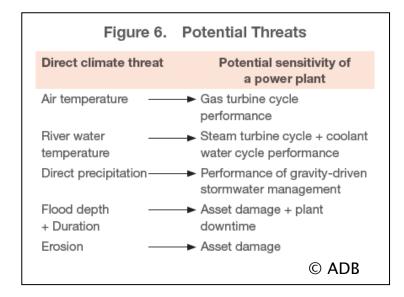
[Component]

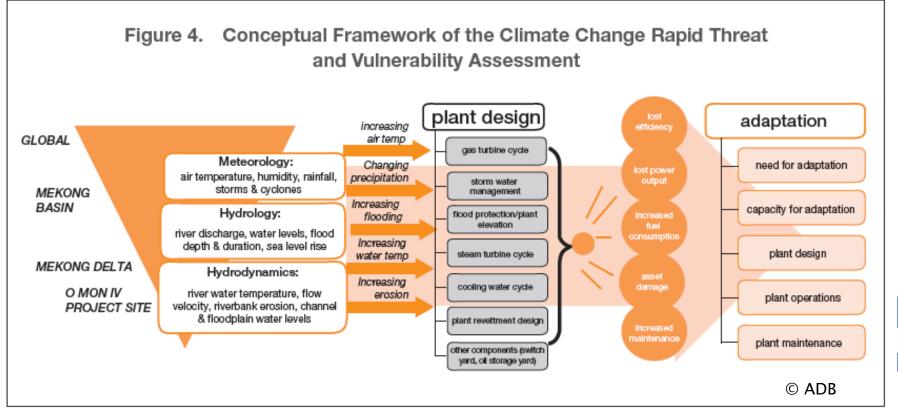
- Establishment/rehabilitation and management of water points
- Capacity building for sustainable pasture management
- Alternative income generation

[Adaptation]

- Fodder production (to supplement pasture during winter)
- Animal shelter strengthening (to protect livestock from severe winter)
- Sustainable pasture management (to prevent desertification)

[Mitigation]


 Sustainable pasture management (to prevent degradation of pasture so that carbon can be sequestrated by pasture and pasture land)



The risk assessment of climate change regarding Tharmal Power Plant

Due to increase of temp. of air and water

- Loss of Generation : 827.5GWh (Ave. 0.8%, 2015–2040)
- Cost Increase: 150M\$ (Reduction rate 10%)

Conclusion

- It is effective of the idea of co-benefit between adaptation and mitigation on developing and expanding both measures
- Project wide consideration provides more chance of the co-benefit

Thank you!

Fodder

Animal Shelter

